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The Crystal and Molecular Structure of Tetragonal L-Cystine
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The crystal structure of tetragonal L-cystine has been determined from three-dimensional X-ray data.
The space group is P4,, with a=6-710 (5) and c¢=21-73 (1) A; Z=4. The structure was solved by a
combination of the E2—1 Patterson function to locate the two S atoms, block-diagonal least-squares
refinement of the S coordinates, and tangent-formula phase refinement. The final structure refinement
used the full-matrix least-squares method with anisotropic temperature factors for S, O, and N and
isotropic terms for C and H. Difficulty was encountered during the final refinement since the molecule
contained a pseudo-twofold axis of symmetry. The final R index was 0-097, based on 962 independent
non-zero reflections. The disulfide dihedral angle was found to be 69-3°. The molecular conformation
is observed to be similar to that of hexagonal L-cystine, with a right-handed disulfide chirality.

Introduction

Cystine (I) structure determinations have been under-
taken in this laboratory mainly to determine the range
of possible crystal conformations and correlate them
with disulfide chirality.

+NH,
[ I
~00C-CH-CH,-S-S-CH,-CH-COO~
)

Previous structure determinations of L-cystine com-
pounds have shown that N, N'-diglycyl-L-cystine (Yakel
& Hughes, 1954), L-cystine dihydrochloride (Steinrauf,
Peterson & Jensen, 1958), L-cystine dihydrobromide
(Peterson, Steinrauf & Jensen, 1960), and L-cystine
diamide dihydrochloride (Chaney & Steinrauf, 1968)
all possess a left-handed disulfide chirality and similar
molecular conformation. Hexagonal L-cystine (Ough-
ton & Harrison, 1959) and now tetragonal L-cystine in
this work possess a right-handed disulfide chirality and
a molecular conformation which is different from the
above class of cystine compounds. The definition of
disulfide chirality is illustrated in Fig. 1.
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Fig. 1. Illustration of right-handed and left-handed disulfide
chirality by use of Newman projections. The projections
are down the S-S’ bond.

Experimental
Preparation

L-Cystine was dissolved in a warm 6N ammonium
hydroxide solution and crystallized by evaporation at
room temperature. Both plates of the hexagonal form
and prisms of the tetragonal form were obtained, the
former being by far the more numerous.

Crystal data

C,H,,N,0,S, F.W. 240-3
a= 6710 (5) A u(Mo Kz)=5-24 cm=!
c=21-73 (1) Crystal size:

0-02%x0-02 x0-016 cm
Z=4
Space group: P4,.

D= 1642 gcm™3
Dy, = 1622

The unit-cell dimensions and estimated standard devia-
tions were obtained from Weissenberg photographs,
with calibration lines from aluminum (a,=4-0489 A at
20°C) superimposed. Precession and Weissenberg
photographs of a tetragonal crystal showed systematic
00/ extinctions for /=4n+1,2,3. Because these photo-
graphs exhibited possible mirror symmetry, it was dif-
ficult to determine the Laue group (4/m or 4/mmm).
Also, the #00 reflections for A =2n+ 1 were either absent
or very weak. As a result, the space group assignment
was ambiguous and was limited to P4,, P4,2,2, and
P4,22. The enantiomorphs to the above space groups
were unlikely candidates, since it is known that mole-
cules of L-cystine pack in a left-handed sense about a
screw axis.

Intensity data

Intensity data were collected with Zr-filtered Mo Ko
(A=0-71069 A) radiation by the sixth-scan method
(Pinkerton & Steinrauf, 1967) on a Supper—Pace auto-
diffractometer about the 6* axis (k=0-7) out to a mini-
mum spacing of 0-8 A. 2226 reflections ( + 4,k,/) were
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measured, 2104 of which were observed greater than
zero. This set of data was twofold redundant for space
group P4, and fourfold redundant for the space groups
with 4/mmm Laue symmetry. The equivalent data sets
(Fua = Finy) were used to scale between levels, and the
twofold redundant data were used to solve the struc-
ture. Because of the low absorption coefficient (5:24
cm™!) and the small size of the crystal, absorption cor-
rections were neglected. Both structure factors and
normalized structure factors |E| were calculated after
corrections for Lorentz and polarization effects had
been applied. The atomic scattering factor curves were
taken from International Tables for X-ray Crystallog-
raphy (1962).

An examination of the Patterson map revealed a peak
approximately 2 A from the origin along the ¢ axis,
which suggested that the disulfide bond may be in this
direction. The same conclusions were reached from
efforts to pack four L-cystine molecules from hexagonal
L-cystine (Oughton & Harrison, 1959) into the tetrag-
onal unit cell. When the molecules were oriented with
their disulfide bonds parallel to ¢ and in either the (110),
(T10), (TT0), or (1T0) planes, a set of molecular dimen-
sions calculated from the tetragonal cell parameters
was in excellent agreement with that of hexagonal L-
cystine (Table 1).

After the disulfide orientation was known, the Harker
sections were interpreted, and the positions for the two
non-equivalent sulfurs, S(1) and S(2), were determined.
These positions were refined by block-diagonal least-
squares calculations (unit weights and B=3:5 A?) to an
R index of 0-396. The quantity minimized was > w(F, —
F.)%. All initial considerations indicated the structure
to be in the lower-symmetry space group P4,. Because
the origin along the 4, screw axis was not defined by
symmetry, the z coordinate of S(1) was held fixed
during refinement. The least-squares program used
was a much modified version of the Sparks, Trueblood
& Okaya program (World List of Crystallographic Com-
puter Programs, 1966). Further refinement was con-
tinued with the tangent formula. 237 calculated phases
(|Exl = 1-5), based on the two sulfur positions, gave an
R=0-183 (R: Z“Ehlobs_ |Eh|calc|/ZlEh|0bs)a after three
cycles of tangent refinement. The new phases were used
to calculate an E map, from which 10 of the 14 atoms
were located. The remaining non-hydrogen atoms were
located from a Fourier map, based on the known atom
positions. Further block-diagonal least-squares refine-
ment, using unit weights and anisotropic temperature
factors for the sulfur, oxygen, and nitrogen atoms,
reduced the R index to 0-125. Fourier difference maps
indicated that no anisotropic corrections were neces

Table 1. 4 comparison of the molecular dimensions for hexagonal and tetragonal L-cystine

First dimension

Second dimension

Third dimension

perpendicular to perpendicular to parallel to
disulfide (A) disulfide (&) disulfide (&)
E 3
Tetragonal 472 (iﬂ’f) 472 (i’;ﬁ) 543 (c/4)
Hexagonal 469 (c/12) 470 (i;—“’) 542 (ay)

* The symbols enclosed in parentheses represent the directions along which the dimensions were calculated.

Table 2. Final atomic parameters with estimated standard deviations in parentheses

All values except the isotropic temperature factors (A?) are multiplied by 10%. The anisotropic temperature factors are expressed in
the form €Xp [— (B| 1h2 + Bzzkz + 33312 + ZBuhk + ZB|3h1+ 2Bz3/\’/)]

X y z By, or By B;; B3 By, By; By
S(1) 1427 (5) 5956 (5) —461* 161 (8) 145 (7) 24 (1) 35 (6) 62 -—-5(2)
S(2) 1508 (5) 6603 (5) 457 (3) 185 (8) 179 (8) 18 (1) 74 (6) 24 (2) 25(2)
o) 5411 (16) 2951 (13) 331 (4) 262 (25) 167 (20) 10 (2) 82 (18) 5(5) =5(5)
0(2) 6436 (16) 6022 (17) 380 (4) 247 (27) 336 (32) 9(2) —123(23) —-10(5) 0(6)
0(3) —1906 (15) 10269 (16) —673 (5) 204 (26) 267 (28) 16 (2) 126 (21) —13(5) —13¢(6)
04 1338 (16) 10919 (14) =770 (5) 264 (27) 166 (22) 14(2) —-79(19) 22 (6) 4 (5)
N(1) 4952 (16) 2926 (16) —877 (5) 175 (24) 162 (24) 9 (2) 40 (18) 3(5) 8 (5)
N(2) —1766 (16) 9917 (15) 537 (5) 192 (26) 125 (21) 12 (2) 30 (18) —8 (6) 5(5)
C(1) 3950 (18) 6417 (18) —747 (6) 247 (19)
C(2) 5506 (16) 4844 (18) —579 (6) 2-38 (19)
C@3) 5834 (17) 4586 (17) 102 (6) 2:28 (18)
C4) 1815 (18) 9266 (19) 483 (6) 2:73 (20)
C(5) 73(17) 10526 (16) 248 (6) 2:03 (17)
C(6) —190 (19) 10536 (18) —467 (7) 2:82 (21)

* This parameter was held constant during refinement.
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sary for the carbon atoms. Because the 00/ data suffered
severely from what was probably extinction, it was
deleted.

Table 3. Final positional parameters for hydrogen atoms

Atomic positions are multiplied by 10°. All hydrogen atoms
Xere assumed to have an isotropic temperature factor B=3-5
2

Hydrogen atom Attached to x y z
H(1) C(1) 442 779 —58
H(2) C(1) 386 649 —123
H(3) C(2) 688 537 —-175
H(4)* N(1) 388 232 —111
H(5)* N(1) 504 199 —52
H(6) N(1) 611 271 —116
H(7) C4) 307 962 22
H(8) C4) 205 966 95
H(9) C(5) 45 1199 37
H(10) N(2) =300 1071 44
H(11)* N(2) —191 990 99
H(12)* N(2) —224 863 36

* Positioned by known geometry,

The twofold data were reduced to its unique set of 962
non-zero reflections (for P4,), and a weighting scheme
was derived. The |F,|’s were divided into zones of 2-5 e
and a mean |F,| and |4 F| were calculated for each zone.
A best-fit curve through the mean values was obtained
and expressed as |4F|=1-21+0-019|F,|. Weights w
were assigned such that w=1-21/|4F|. Refinement,
using the above weighting scheme, stopped at R=0-102
(weighted R=0-130) after six cycles of full-matrix
least-squares calculations (Busing, Martin & Levy,
1962).

All except four hydrogen atoms [H(4), H(5), H(11),
and H(12)] were easily located from a three-dimen-
sional difference Fourier map. Peaks corresponding to
hydrogen atoms were observed to range in height from
0-7 to 0-9 ¢ A~3. There were no other peaks above
04 ¢ A=3. The remaining hydrogens were positioned
about their respective nitrogens, assuming a tetrahedal
arrangement and an N-H bond length of 1-0 A. With
the hydrogen-atom parameters not varied (B=3-5 A2

Table 4. Final observed and calculated structure factors
The columns are /, 10|F,|, 10|F,|, and 103, (cycles).
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full-matrix least-squares refinement was continued
until the R index converged to 0-097. The average
shift/estimated standard deviation was below 0-24, and
the goodness-of-fit [>w(F,— F.)*/m—s]"* was 3-1. The
final non-hydrogen parameters with estimated standard
deviations are given in Table 2, and the hydrogen posi-
tions are given in Table 3. The final observed and cal-
culated structure factors are listed in Table 4.

Examination of the final atomic coordinates sug-
gested that the two halves of the cystine molecule were
nearly related by a twofold axis of symmetry running
through the midpoint of the S(1)-S(2) bond. The same
situation was observed for dibenzyl disulfide (Lee &
Bryant, 1969). During the final cycles of cystine refine-
ment, several parameters were observed to shift by as
much as 80% of their estimated standard deviation.
The correlation matrix showed some degree of cor-
relation (0-10 to 0-20) between the S(1) and S(2) param-
eters. There were also slight parameter correlations
between the C(1)-C(4), C(2)-C(5), C(3)-C(6), N(1)-
N(2), O(1)-0(3), and O(2)-O(4) atom pairs.

Since the 400 extinctions were not conclusive, other
tests were used to determine the correct space group (a
choice between P4, and P4,2,2).

One of the tests used to differentiate between space
groups was the calculation of an agreement index (R’ =
ZHFhkll_lFl_lkl”/Z|FthD' The space group P4,2,2 re-
quires that |F,,,| =|Fs.l, while P4, does not. The k=0
level served as a basis for comparison, since the A0/
and 70/ levels are equivalent for both space groups.
The results, which are presented in Table 5, show the
k =0 agreement value to be significantly lower than the
upper-level values.

Table 5. Agreement values (R') between the hk! and hkl

levels
Level & R’
0 0-0394
1 0-189
2 0-168
3 0-198
4 0-226
5 0:226

Statistical averages (Karle, Dragonette & Brennen,
1966) also were calculated for the #0/ and #1/ levels of
data. The 40/ level is required to be centrosymmetric
for P4,2,2 and non-centrosymmetric for P4,, while
the h1/ level is non-centrosymmetric for both space
groups. The averages, which are presented in Table 6,
indicate that the 40/ and A1/ levels are closer to being
non-centrosymmetric.

As a final test, the structure was further refined by
full-matrix least-squares calculations in both space
groups P4, and P4,2,2, and the final R indices after
convergence were compared. The values obtained were
0-330 and 0-097, respectively. The rather short inter-
molecular contact of 3-10 A, observed between C(5)
and O(4), helped explain the difficulty of refining in
P4,2,2. It appears that the major objection to placing

the sulfur atoms across a crystallographic twofold axis
is the steric interaction between glycine-like groups on
adjacent molecules.

Table 6. Statistical tests on the hOl and hll levels

Observed Level {E}) QIER-1])
hol 0-907 0-719
hll 0-957 0-569
Theoretical ~ Level {El) QIEP=11])
Acentric  0-886 0-736
Centric 0-798 0-968

It was concluded from the above results that the
tetragonal form of L-cystine contains almost, but not
quite, a twofold axis of symmetry. P4, was assigned as
the most probable space group for tetragonal L-cystine.

Discussion

Covalent bond lengths and angles for tetragonal (TLC)
and hexagonal L-cystine (HLC) (Oughton & Harrison,
1959) are shown in Fig. 2. Each half of the TLC mole-
cule is related by a pseudo-twofold axis of symmetry.
A comparison of related covalent bond lengths shows
an equivalence, usually within two standard deviations,
while related intermolecular distances differ as much
as 36 standard deviations [S(2)---C(1), 3-61 (1) A;
and S(1)---C(4), 397 (1) A]. The above and other
related intermolecular distances indicate that most of
the molecule’s deviation from twofold symmetry
occurs at the f-carbons, C(1) and C(4).

When the covalent bond lengths and angles for TLC

N
@’ s ),~ N
) 6o 1269

2~ o
1.563 €62 3 )
% N\ W < o
“o,b/ , 2 (o3 -
7, ~
k4 ~

50,

®

o
02} 1238

HEXAGONAL L-CYSTINE

TETRAGONAL L-CYSTINE

Fig. 2. Tetragonal and hexagonal (Oughton & Harrison, 1959)
L-cystine. A comparison of covalent bond lengths, angles,
and conformation. The estimated standard deviations for
tetragonal L-cystine vary from 0-006 A for the S-S distances
t0 0-019 A for the C-C distances and from 0-5° for the S-S-C
angles to 1-0° for the C-C-C angles.
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are compared with those of HLC, all except the sulfur
valence angles are equivalent within experimental er-
ror. The average sulfur valence angle for TLC is
105-2 (6)°, which is significantly different from 114-5 (4)°
for HLC. In fact, this value for HLC is significantly
different from the average value 103-6 (11)° for all
other structurally determined L-cystine compounds to
date (Chaney, 1969).

The molecules of TLC are held together by a net-
work of hydrogen bonds. A molecular packing dia-
gram (Fig. 3) drawn by ORTEP (Johnson, 1965) shows
the hydrogen-bonding arrangement and distances.
The approximate tetrahedral arrangement of hydrogen-
bonded oxygen atoms about the amino nitrogens and
equivalent carboxyl C-O bond lengths indicate that

Q

(ubove)Odf_ 5 G Jjﬁo

pS

Q’)

=

1§ o)
7
J}~
("\ a
@3

Fig. 3. A molecular packing diagram of tetragonal L-cystine.
The estimated standard deviations for hydrogen-bond dis-
tances vary from 0-01 to 0-02 A.

715

both TLC and HLC exist in their zwitterion form.
Again, TLC’s deviation from crystallographic twofold
symmetry is apparent from its non-equivalent hydrogen
bonding. The N(1)- - - O(4)[2:79 (2) A]and N(2)- - - O(2)
[2:90 (2) A] hydrogen bonds, related by the pseudo-
twofold axis, deviate by more than five standard devia-
tions. Both TLC and HLC are found to have the same
average hydrogen-bonding distance of 2-82 A, sug-
gesting that both crystal forms are equally stabilized
by hydrogen bonding.

The mean-plane equations and atomic deviations
for the glycine-like groups of TLC are listed in Table 7.
None of the atoms included in the calculation deviated
significantly from their respective mean planes. The
amino nitrogens, N(1) and N(2), are observed to devi-
ate by 0-148 and —0-131 A, respectively.

The molecular conformations of TLC and HLC are
similar, as shown in Fig. 2. Both molecules are observed
to have a right-handed disulfide chirality (see Fig. 1).
An obvious difference in the two conformations is the
dihedral angle between the planes of the glycine-like
groups on one molecule. For TLC, this dihedral angle
is 60-9°, which is significantly different from that of
12:0° for HLC. Another conformational difference is
the disulfide dihedral angle [C(4)-S(2)-S(1)-C(1)],
which is 69-3° for TLC and 74° for HLC.

The observed molecular conformations of cystine
are influenced by the packing forces within the crystal.
When the two crystalline-state conformations are com-
pared, we find that most of the conformational dif-
ferences are at the ends of the molecule, as observed
from the dihedral angles between glycine-like groups.
This angle for TLC is expected to be close to 90°, since
the direction of hydrogen bonding is mostly perpen-
dicular to the crystal’s fourfold symmetry. However,
for HLC, its hydrogen bonding is in a direction almost
parallel to the crystal’s sixfold axis, and the glycine-
like group dihedral angle is expected to be near 0°. It is
interesting to observe that although the glycine-like
group dihedral angles differ greatly between conforma-
tional states, the disulfide dihedral angles are relatively
close in value. It would appear that cystine’s confor-

Table 7. Least-squares planes and atomic deviations (A)

All equations ate expressed in orthogonal Angstrém space.

I. Equation through atoms C(2), C(3), O(1) and O(2)
0-938x—0-305y—0-166z=2-69
Standard deviation of atoms from plane =0-008 A

Q) —0-003
Cc(3) 0-011
o(1) —0-004
0(2) —0-004
N(1) 0-148

III. Equation through atoms S(2), S(1) and C(1)
—0-246x +0-948y —0-200z=3-75

I1. Equation through atoms C(5), C(6), O(3) and O(4)
—0-192x4+0-980y +0-042z=6-93
Standard deviation of atoms from plane =0-010 A

C(5) 0-004
C(6) —0-015
0(3) 0-006
04) 0-006
N(2) —0-131

IV. Equation through atoms S(1), S(2) and C(4)
0-993x—0-115y —0-002z =0-495

Angle between planes I and II=60-9°
Angle between planes III and IV =69-3°
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mational flexibility is a result of the carboxyl groups
rotating about the C(2)-C(3) and C(5)-C(6) bonds;
the amount of rotation depending upon the packing
requirements of its nearest neighbors. Similarly, if
L-cystine was present in a polypeptide or protein, we
would expect its specific conformation to be dependent
upon the polypeptide’s or protein’s backbone confor-
mation,
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Structure Cristalline du Complexe Cobalt (Imidazole)s (Acétate), Monohydraté

PArR ALAIN GADET ET ODETTE LEFEBVRE SOUBEYRAN

Laboratoire de Cristallochimie, Tour 44, 11 quai Saint Bernard, 75005 Paris, France

(Regu le 3 septembre 1973, accepté le 5 novembre 1973)

The Co(Im)s(Ac),. H,O complex crystallizes in the triclinic system, space group PT, with one ‘molecule’
in the unit cell. The unit-cell constants are: a=8-48, b=10-05, c=8-81 A, «=90-0, §=82-3, y=94-0°.
1600 reflexions have been collected by photographic methods on a Weissenberg goniometer and the
structure has been solved by the heavy-atom method (R=0-095). One water molecule is present in the
unit cell and is able to occupy statistically two centrosymmetric positions. The ligands are imidazole
groups. The coordination polyhedron is octahedral and does not show significant deformation with
respect to a regular octahedron. The ligands do not all have the same orientation. A three-dimensional
hydrogen-bond network exists between ligands and the water molecule or acetate groups.

Introduction

L’étude structurale du complexe hydraté
Co(Im)e(Ac),. H,0 a été abordée a la suite du complexe
Co(Im),(Ac), (Gadet, 1974). Ce dernier ne conserve sa
structure tétraédrique que dans les solvants organiques
purs ou additionnés de peu d’eau. Un grand pourcen-
tage d’eau le transforme en complexe octaédrique par
addition de molécule d’eau (Dobry-Duclaux & May,
1970).

Le complexe Co(Im)s(Ac), obtenu & partir d’une
solution aqueuse est un complexe octaédrique qui fait
intervenir les mémes groupements chimiques que le
complexe Co(Im),(Ac),. Le travail présenté ici concerne
la description de sa structure cristalline, les premiers

Tableau 1. Données cristallographiques et physiques

Formule bljute:_szI-I}oQ.,.NmCo. H,O
Systéme cristallin: triclinique
Groupe spatial: PT, mais P1 est plausible.

D.=1,35 g cm~? avec une molécule d’eau
1,39 g cm 2 avec deux molécules d’eau

D,=137gcm™3

Radiation utilisée: Co K&(1=1,7902 A)



